Unsupervised Fraud Detection in Medicare Australia
نویسندگان
چکیده
Fraud detection is a fundamental data mining task with a wide range of practical applications. Finding rare and evolving fraudulent claimant behaviour in millions of electronic Medicare records poses unique challenges due to the unsupervised nature of the problem. In this paper, we investigate the problem of efficiently and effectively identifying potential non-compliant Medicare claimants in Australia. We propose an unsupervised and data-driven fraud detection system called UNISIM. It integrates various techniques, such as feature selection, clustering, pattern recognition and outlier detection. By utilising the beneficial properties of these techniques, we are able to automate the detection process. Additionally, useful temporal patterns are extracted from the existing data for future analysis. Through extensive empirical studies, UNISIM is shown to effectively identify suspects with highly irregular patterns. Additionally, it is capable of detecting groups of outliers. .
منابع مشابه
Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملTwo models to investigate Medicare fraud within unsupervised databases
We propose two models to identify fraud, waste and abuse in Medicare. These models are used to flag health care providers. The motivation for these models is based on observed cases of fraud. The paper details the use of clustering algorithms, regression analysis, and various descriptive statistics that are components of these models. Some of the challenges in the struggle to reduce fraud in Me...
متن کاملFraud Detection in Health Insurance Using Expert Re-referencing
Fraud is widespread and very costly to the healthcare insurance system. Fraud involves intentional deception or misrepresentation intended to result in an unauthorized benefit. It is shocking because the incidence of health insurance fraud keeps increasing every year. In order to detect and avoid the fraud, data mining techniques are applied. Frauds blow a hole in the insurance industry. Health...
متن کاملUnsupervised Fraud Detection in Time Series data
Fraud detection is of great importance to financial institutions. This paper is concerned with the problem of finding outliers in time series financial data using Peer Group Analysis (PGA), which is an unsupervised technique for fraud detection. The objective of PGA is to characterize the expected pattern of behavior around the target sequence in terms of the behavior of similar objects, and th...
متن کاملOutlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data
Outlier detection is useful for credit card fraud detection. Due to drastic increase in digital frauds, there is a lot of financial losses and therefore various techniques are developed for fraud detection and applied to diverse business fields. In high-dimensional data, outlier detection presents some challenges because of increment of dimensionality. In this paper, the proposed model aims to ...
متن کامل